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Abstract

Molodtsov pioneered the soft set theory, offering a mathematical framework tailored for man-
aging uncertain data, a concept now widely embraced by scholars to address decision-making
challenges. Directed graphs, comprising nodes connected by directed edges, serve as invaluable
tools for analysing and resolving problems related to social connections, optimal routes, electri-
cal circuits, and various other domains. Extending the notion of soft sets to directed graphs, soft
directed graphs provide a parameterised approach for understanding relationships within di-
rected graph structures. This study delves into the exploration and analysis of certain character-
istics of the categorical and restricted categorical products of soft directed graphs. We establish
that these products form soft directed graphs. Detailed results are provided on the node and
directed edge counts of both products, along with insights into the directed part in-degree, out-
degree, and degree sums of their nodes, enhancing the theoretical foundation of soft directed
graphs.
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1 Introduction

Graphs are fundamental structures used to model relationships between entities in various
real-world scenarios. Their versatility lies in their ability to abstract complex connections into sim-
ple representations. In many applications, graphs are indispensable, offering solutions to prob-
lems in fields ranging from social networking to transportation logistics and beyond.

A graph consists of two main components: nodes and edges. Directed Graphs, a specific
type of graph, have edges with a directionality, meaning they indicate a one-way relationship
between nodes. In practical applications, graphs are encountered in diverse contexts. Social me-
dia platforms utilise graphs to represent connections between users, enabling functionalities like
friend recommendations and social network analysis. Navigation systems likeGoogleMaps utilise
graphs to represent road networks, allowing users to find optimal routes between locations. The
internet itself can be modelled as a graph, with web pages as nodes and hyperlinks as edges.
Blockchains, the underlying technology behind cryptocurrencies, also use graphs to represent
transaction histories and verify transactions. Additionally, graphs play a crucial role in neural
networks, where they represent the connections between artificial neurons.

The concept of soft sets, introduced by Molodtsov [14], extends the traditional set theory to
handle uncertainties. Soft set theory provides a mathematical framework for dealing with impre-
cise or uncertain information, making it useful in solving problems where traditional mathemat-
ical tools fall short. Researchers like Adam and Hassan [1] and Kamal and Abdulla [13] have
successfully applied this theory to various practical problems. Maji et al. [15] also explained a
fuzzy soft set theoretic approach to decision-making problems.

Building on the foundation of soft set theory, researchers such as Thumbakara andGeorge [19]
introduced the concept of soft graphs. They also introduced subdivision graph, power, and line
graph of a soft graph. Soft graphs extend the traditional graph model to incorporate uncertainty,
enabling the representation and analysis of uncertain relationships between entities. Akram and
Nawas [4] modified the definition of soft graphs and introduced certain types of soft graphs [5],
fuzzy soft graph [3], and some of their applications [6]. Akram and Zafar studied soft trees [7]
and fuzzy soft trees [2]. Advancements in the field of soft graphs have been significant. Re-
searchers Thenge, Jain, and Reddy have contributed to the development of soft graphs, by in-
troducing concepts like connectedness [18], soft trees [17], and associated matrices [16]. George,
Thumbakara, and Jose have further expanded the domain by introducing concepts such as soft hy-
pergraphs, soft directed graphs [12], and soft disemigraphs, and thoroughly investigating their
properties and applications.

The study of soft graphs has also led to the exploration of graph product operations [10].
Product operations allow the combination of two graphs to create a new graphwith specific prop-
erties. Additionally, Baghernejad and Borzooei [8] have demonstrated the utility of soft graphs
and soft multigraphs in managing complex systems such as urban traffic flows. Further contri-
butions to the field include the introduction of novel concepts such as Eulerian and Hamiltonian
soft graphs, graph isomorphism, and various product operations on soft graphs like tensor and
strong products and co-normal and modular products. They also introduced some topics in soft
directed graphs like associated degrees and matrices [11], modular product, homomorphic prod-
uct, rooted product, disjunctive product and corona product. Additionally, they have extended
these concepts to semigraphs and introduced soft semigraphs, and studied their connectedness,
and some operations.

The study of soft graphs represents a significant advancement in graph theory, enabling the
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representation and analysis of uncertain relationships in complex systems. The application of soft
set theory to graphs opens up new possibilities for solving practical problems in diverse fields.
In this work, the categorical and the restricted categorical products of soft directed graphs are
introduced and studied.

2 Preliminaries

In this preliminary section, we lay the foundation for comprehending soft sets, directed graphs,
and soft directed graphs. Also, we provide a brief overview of topics including the directed part
and various types of degrees associated with soft directed graphs.

2.1 Directed graphs

For preliminaries of directed graphs, we refer to [9].

“A directed graph or directed graph Ψ∗ consists of a non-empty finite set ϱ of elements called
nodes and a finite set δ of ordered pairs of distinct nodes called directed edges or arcs. We often write
Ψ∗ = (ϱ, δ) to represent a directed graph. The number of nodes and directed edges in a directed
graph Ψ∗ are called order and size respectively. The first node u of a directed edge (u, v) is called
its tail and the second node v is called its head. If (u, v) is a directed edge then v is adjacent from u
and u is adjacent to v. A node u is incident to a directed edge a if u is the head or tail of a.

A directed graph Ψ∗∗ = (ϱ′, δ′) is called a subdirected graph of Ψ∗ = (ϱ, δ) if ϱ′ ⊆ ϱ and δ′ ⊆ δ.
The in-degree of a node v denoted by ideg v is the number of nodes in Ψ∗ from which v is adjacent
and out-degree of v denoted by odeg v is the number of nodes in Ψ∗ to which v is adjacent. The
sum ideg v + odeg v is called the degree of the node v and is denoted by deg v. In a directed graph
Ψ∗ = (ϱ, δ),

∑
v∈ϱ ideg(v) =

∑
v∈ϱ odeg(v) =Number of directed edges inΨ∗ and

∑
v∈ϱ deg(v) = 2

(Number of directed edges in Ψ∗). Let Ψ∗
1 = (ϱ1, δ1) and Ψ∗

2 = (ϱ2, δ2) be two directed graphs.
Their categorical product Ψ∗

1 × Ψ∗
2 is a directed graph with node set ϱ(Ψ∗

1 × Ψ∗
2) = ϱ1 × ϱ2 and

directed edge set δ(Ψ∗
1 × Ψ∗

2), where ((t1, t
′
1), (t2, t

′
2)) is a directed edge in Ψ∗

1 × Ψ∗
2 if and only if

(t1, t2) is a directed edge in Ψ∗
1 and (t′1, t

′
2) is a directed edge in Ψ∗

2. ”

2.2 Soft set

Molodstov [14] defined soft set as follows:

“Let R be a set of parameters and U be an initial universe set. Then a pair (F,R) is called a soft
set (over U) if and only F is a mapping of R into the power set of U . That is, F : R → P(U).”

2.3 Soft directed graphs

Jose et al. [11] defined soft directed graph as follows:

“Let Ψ∗ = (ϱ, δ) be a directed graph having node set ϱ and directed edge set δ and let ℜ be a
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non-empty set. Let a subset R of ℜ × ϱ be an arbitrary relation from ℜ to ϱ. Define γ : ℜ → P(ϱ)
by γ(ε) = {u ∈ ϱ|εRu} where P(ϱ) denotes the powerset of ϱ. The pair (γ,ℜ) is a soft set over ϱ.
Also, define α : ℜ → P(δ) by α(ε) = {(u, v) ∈ δ|{u, v} ⊆ γ(ε)} where P(δ) denotes the powerset
of δ. The pair (α,ℜ) is a soft set over the directed edge set δ.

Then Ψ = (Ψ∗, γ, α,ℜ) is called a soft directed graph if it satisfies the following conditions:

1. Ψ∗ = (ϱ, δ) is a directed graph having node set ϱ and directed edge set δ.

2. ℜ is a nonempty set of parameters.

3. (γ,ℜ) is a soft set over the node set ϱ.

4. (α,ℜ) is a soft set over the directed edge set δ.

5. (γ(ε), α(ε)) is a subdirected graph of Ψ∗ for all ε ∈ ℜ.

If we represent (γ(ε), α(ε)) byM(ε) then the soft directed graphΨ is also given by {M(ε) : ε ∈ ℜ}.
ThenM(ε) corresponding to a parameter ε in ℜ is called a directed part or simply dipart of the soft
directed graph Ψ.

Let Ψ = (Ψ∗, γ, α,ℜ) be a soft directed graph and let M(ε) be a directed part of Ψ for some
ε ∈ ℜ. Let v be a node ofM(ε). Then directed part indegree of v inM(ε) denoted by ideg v[M(ε)]
is defined as the number of nodes of M(ε) from which v is adjacent. That is, ideg v[M(ε)] is the
number of directed edges of M(ε) that have v as its head. Similarly, directed part outdegree of v
inM(ε) denoted by odeg v[M(ε)] is defined as the number of nodes ofM(ε) to which v is adjacent.
That is, odeg v[M(ε)] is the number of directed edges of M(ε) that have v as its tail. The directed
part degree of v in M(ε) is defined as the sum, ideg v[M(ε)] + odeg v[M(ε)] and is denoted by
deg v[M(ε)].”

3 Categorical Product of Soft Directed Graphs

In this section, we explore the concept of the categorical product of soft directed graphs. Start-
ing with two directed graphs, we derive their corresponding soft directed graphs and define their
categorical product. We establish three key theorems: one demonstrating that the categorical
product of soft directed graphs is itself a soft directed graph; another detailing the node and di-
rected edge count in the resultant graph; and the third theorem offers insights into various degree
sums related to the categorical product. Examples are provided to illustrate these concepts.

Definition 3.1. Let, Ψ∗
1 = (ϱ1, δ1) and Ψ∗

2 = (ϱ2, δ2) be two directed graphs and

Ψ1 = (Ψ∗
1, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1}, and Ψ2 = (Ψ∗

2, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2},

be two soft directed graphs of Ψ∗
1 and Ψ∗

2 respectively. Then the categorical product of Ψ1 and Ψ2, which
is represented by Ψ1 × Ψ2, is defined as Ψ1 × Ψ2 = {M1(ε1) × M2(ε2) : (ε1, ε2) ∈ ℜ1 × ℜ2}. Here
M1(ε1) × M2(ε2) denotes the categorical product of the directed parts M1(ε1) of Ψ1 and M2(ε2) of Ψ2

which is defined as follows:

M1(ε1)×M2(ε2) is a directed graph with node set ϱ(M1(ε1)×M2(ε2)) = γ1(ε1)×γ2(ε2) and directed
edge set δ(M1(ε1)×M2(ε2)), where ((t1, t′1), (t2, t′2)) is a directed edge in M1(ε1)×M2(ε2) if and only
if (v1, v2) is a directed edge in M1(ε1) and (t′1, t

′
2) is a directed edge in inM2(ε2).
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Example 3.1. Let Ψ∗
1 = (ϱ1, δ1) be a directed graph which is shown in Figure 1.

Figure 1: Directed graph Ψ∗
1 = (ϱ1, δ1).

Let ℜ1 = {v1, v6} ⊆ ϱ1 be a set of parameters. Define γ1 : ℜ1 → P(ϱ1) by

γ1(ε) = {u ∈ ϱ1 | u = ε or u is adjacent from ε}, ∀ε ∈ ℜ1.

That is, γ1(v1) = {v1, v2, v4} and γ1(v6) = {v4, v6, v8}. Here (γ1,ℜ1) is a soft set over ϱ1.

Also, define α1 : ℜ1 → P(δ1) by α1(ε) = {(u, v) ∈ δ1 | {u, v} ⊆ γ1(ε)},∀ε ∈ ℜ1. That is,
α1(v1) = {(v1, v2), (v1, v4), (v2, v4)} and α1(v6) = {(v6, v4), (v6, v8)}. Here, (α1,ℜ1) is a soft set over
δ1. Then M1(v1) = (γ1(v1), α1(v1)) and M1(v6) = (γ1(v6), α1(v6)) are subdirected graphs of Ψ∗

1 as
shown in Figure 2. Therefore Ψ1 = {M1(v1),M1(v6)} is a soft directed graph of Ψ∗

1.

Figure 2: Soft directed graph Ψ1 = {M1(v1),M1(v6)}.

Let Ψ∗
2 = (ϱ2, δ2) be a directed graph which is shown in Figure 3.

Figure 3: Directed graph Ψ∗
2 = (ϱ2, δ2).
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Consider the parameter set ℜ2 = {u2} ⊆ ϱ2. Define γ2 : ℜ2 → P(ϱ2) by

γ2(ε) = {u ∈ ϱ2 | u = ε or u is adjacent from ε}, ∀ε ∈ ℜ2.

That is, γ2(u2) = {u2, u4}. Here, (γ2,ℜ2) is a soft set over ϱ2. Also, define α2 : ℜ2 → P(δ2) by
α2(ε) = {(u, v) ∈ δ2 | {u, v} ⊆ γ2(ε)},∀ε ∈ ℜ2. That is, α2(u2) = {(u2, u4)}. Here, (α2,ℜ2) is a soft
set over δ2. Then,M2(u2) = (γ2(u2), α2(u2)) is a subdirected graph ofΨ∗

2 as shown in Figure 4. Therefore,
Ψ2 = {M2(u2)} is a soft directed graph of Ψ∗

2.

Figure 4: Soft directed graph Ψ2 = {M2(u2)}.

Then, Ψ1 ×Ψ2 = {M1(v1)×M2(u2),M1(v6)×M2(u2)} is shown in Figure 5.

Figure 5: Ψ1 × Ψ2 = {M1(v1) × M2(u2),M1(v6) × M2(u2)}.

Theorem 3.1. Let Ψ∗
1 = (ϱ1, δ1) and Ψ∗

2 = (ϱ2, δ2) be two directed graphs and Ψ1 and Ψ2 be two soft
directed graphs of Ψ∗

1 and Ψ∗
2 respectively. Then Ψ1 ×Ψ2 is a soft directed graph of Ψ∗

1 ×Ψ∗
2.

Proof. Let Ψ1 = (Ψ∗
1, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1} be a soft directed graph of Ψ∗

1 = (ϱ1, δ1) and
Ψ2 = (Ψ∗

2, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2} be a soft directed graph of Ψ∗
2 = (ϱ2, δ2). Then the

categorical product Ψ1 ×Ψ2 is defined as,

Ψ1 ×Ψ2 = {M1(ε1)×M2(ε2) : (ε1, ε2) ∈ ℜ1 ×ℜ2}.
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Here M1(ε1) × M2(ε2) denotes the categorical product of the directed parts M1(ε1) of Ψ1 and
M2(ε2) of Ψ2 which is defined as follows: M1(ε1) × M2(ε2) is a directed graph with node set
ϱ(M1(ε1)×M2(ε2)) = γ1(ε1)×γ2(ε2) anddirected edge set δ(M1(ε1)×M2(ε2)), where ((t1, t′1), (t2, t′2))
is a directed edge inM1(ε1)×M2(ε2) if and only if (v1, v2) is a directed edge inM1(ε1) and (t′1, t

′
2)

is a directed edge in in M2(ε2).

The categorical product Ψ∗
1 × Ψ∗

2 of the two directed graphs Ψ∗
1 and Ψ∗

2 is a directed graph
with node set ϱ(Ψ∗

1 × Ψ∗
2) = ϱ1 × ϱ2 and directed edge set δ(Ψ∗

1 × Ψ∗
2), where ((t1, t

′
1), (t2, t

′
2)) is

a directed edge in Ψ∗
1 × Ψ∗

2 if and only if (v1, v2) is a directed edge in Ψ∗
1 and (t′1, t

′
2) is a directed

edge in in Ψ∗
2.

Let the parameter set be ℜΨ1×Ψ2
= ℜ1 × ℜ2. Define γΨ1×Ψ2

from ℜΨ1×Ψ2
to P[ϱ(Ψ∗

1 × Ψ∗
2)]

by γΨ1×Ψ2
(ε1, ε2) = γ1(ε1)× γ2(ε2), ∀(ε1, ε2) ∈ ℜ1 × ℜ2. Then (γΨ1×Ψ2

,ℜΨ1×Ψ2
) is a soft set over

ϱ(Ψ∗
1 ×Ψ∗

2). Also, define αΨ1×Ψ2
from ℜΨ1×Ψ2

to P[δ(Ψ∗
1 ×Ψ∗

2)] by,

αΨ1×Ψ2(ε1, ε2) = {((u, v), (y, z)) ∈ δ(Ψ∗
1×Ψ∗

2) | {(u, v), (y, z)} ∈ γΨ1×Ψ2(ε1, ε2)},∀(ε1, ε2) ∈ ℜ1×ℜ2.

Then (αΨ1×Ψ2
,ℜΨ1×Ψ2

) is a soft set over δ(Ψ∗
1×Ψ∗

2). Ifwe represent (γΨ1×Ψ2
(ε1, ε2), αΨ1×Ψ2

(ε1, ε2))
by MΨ1×Ψ2

(ε1, ε2), then MΨ1×Ψ2
(ε1, ε2) is a subdirected graph of Ψ∗

1 × Ψ∗
2,∀(ε1, ε2) ∈ ℜ1 × ℜ2,

since γ1(ε1) × γ2(ε2) ⊆ ϱ1 × ϱ2 and any directed edge in αΨ1×Ψ2
(ε1, ε2) is in δ(Ψ∗

1 × Ψ∗
2). Then

Ψ1 ×Ψ2 can be represented by the 4-tuple (Ψ∗
1 ×Ψ∗

2, γΨ1×Ψ2 , αΨ1×Ψ2 ,ℜΨ1×Ψ2) and also by,

{MΨ1×Ψ2(ε1, ε2) : (ε1, ε2) ∈ ℜ1 ×ℜ2}

and Ψ1 ×Ψ2 is a soft directed graph of Ψ∗
1 ×Ψ∗

2.

Theorem 3.2. The categorical product Ψ1 ×Ψ2 contains
∑

(εi,εj)∈ℜ1×ℜ2
|γ1(εi)||γ2(εj)| nodes and∑

(εi,εj)∈ℜ1×ℜ2
|α1(εi)||α2(εj)| directed edges, if we count the nodes and directed edges based on the num-

ber of times they appear in various directed parts of Ψ1 ×Ψ2.

Proof. By definition, Ψ1 × Ψ2 = {M1(ε1) × M2(ε2) : (ε1, ε2) ∈ ℜ1 × ℜ2}. The parameter set of
Ψ1 ×Ψ2 is ℜ1 ×ℜ2. Consider the directed partM1(εi)×M2(εj) of Ψ1 ×Ψ2 corresponding to the
parameter (εi, εj) ∈ ℜ1 × ℜ2. The node set of M1(εi) × M2(εj) is γ1(εi) × γ2(εj) which contains
|γ1(εi)||γ2(εj)| elements. This is the case for all directed parts of Ψ1 × Ψ2. Therefore the total
number of nodes in Ψ1 ×Ψ2 is

∑
(εi,εj)∈ℜ1×ℜ2

|γ1(εi)||γ2(εj)|.

Also we know, there is a directed edge ((tq, tr), (ts, tw)) inM1(εi)×M2(εj) if and only if (tq, ts)
is a directed edge in M1(εi) and (tr, tw) is a directed edge in M2(εj). There are |α1(εi)| directed
edges inM1(εi) and |α2(εj)| directed edges inM2(εj). Sowe can choose a pair of directed edges ak
and al such that one is fromM1(εi) and the other is fromM2(εj) in |α1(εi)||α2(εj)| different ways.
Suppose that ak is the directed edge (tq, ts) inM1(εi) and al is the directed edge (tr, tw) inM2(εj).
Then this pair of directed edges gives a directed edge ((tq, tr), (ts, tw)) inM1(εi)×M2(εj). Hence
M1(εi) × M2(εj) contains totally |α1(εi)||α2(εj)| directed edges. This is the case for all directed
parts of Ψ1 ×Ψ2. Therefore total number of directed edges in Ψ1 ×Ψ2 is∑

(εi,εj)∈ℜ1×ℜ2

|α1(εi)||α2(εj)|.

Example 3.2. Consider the directed graphs given in Example 3.1. Here we have total number of nodes in
Ψ1 × Ψ2 = 12 and

∑
(εi,εj)∈ℜ1×ℜ2

|γ1(εi)||γ2(εj)| = (3.2) + (3.2) = 12. That is, the total number of
nodes in Ψ1 ×Ψ2 =

∑
(εi,εj)∈ℜ1×ℜ2

|γ1(εi)||γ2(εj)|.
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Also total number of directed edges in Ψ1 ×Ψ2 = 5 and,∑
(εi,εj)∈ℜ1×ℜ2

|α1(εi)||α2(εj)| = (3.1) + (2.1) = 5.

That is, total number of directed edges in Ψ1 ×Ψ2 =
∑

(εi,εj)∈ℜ1×ℜ2
|α1(εi)||α2(εj)|.

Theorem 3.3. Let Ψ∗
1 = (ϱ1, δ1) and Ψ∗

2 = (ϱ2, δ2) be two directed graphs and Ψ1 = (Ψ∗
1, γ1, α1,ℜ1)

and Ψ2 = (Ψ∗
2, γ2, α2,ℜ2) be two soft directed graphs of Ψ∗

1 and Ψ∗
2 respectively. Then,

(i) ∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

ideg(u, v)[MΨ1×Ψ2(εi, εj)]

=
∑

(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

odeg(u, v)[MΨ1×Ψ2(εi, εj)]

=
∑

(εi,εj)∈ℜ1×ℜ2

|α1(εi)||α2(εj)|.

(ii) ∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2 (εi,εj)

deg(u, v)[MΨ1×Ψ2
(εi, εj)] =

∑
(εi,εj)∈ℜ1×ℜ2

2|α1(εi)||α2(εj)|.

Proof.

(i) Consider any directed part MΨ1×Ψ2
(εi, εj) = (γΨ1×Ψ2

(εi, εj), αΨ1×Ψ2
(εi, εj)) of Ψ1 × Ψ2

which is given by M1(εi) × M2(εj). By Theorem 3.2, we have number of directed edges in
M1(εi)×M2(εj) is |α1(εi)||α2(εj)|. Since the directed partMΨ1×Ψ2(εi, εj) is a directed graph
having |α1(εi)||α2(εj)| directed edges, we have∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

ideg(u, v)[MΨ1×Ψ2(εi, εj)] =
∑

(u,v)∈γΨ1×Ψ2
(εi,εj)

odeg(u, v)[MΨ1×Ψ2(εi, εj)]

= |α1(εi)||α2(εj)|,

since each directed edge in MΨ1×Ψ2
(εi, εj) contributes 1 each to the sum,∑

(u,v)∈γΨ1×Ψ2
(εi,εj)

ideg(u, v)[MΨ1×Ψ2(εi, εj)],

and to the sum, ∑
(u,v)∈γΨ1×Ψ2 (εi,εj)

odeg(u, v)[MΨ1×Ψ2
(εi, εj)].

This is the case for all the directed parts MΨ1×Ψ2
(εi, εj) of Ψ1 ×Ψ2. Hence,∑

(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

ideg(u, v)[MΨ1×Ψ2
(εi, εj)]

=
∑

(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2 (εi,εj)

odeg(u, v)[MΨ1×Ψ2
(εi, εj)]

=
∑

(εi,εj)∈ℜ1×ℜ2

|α1(εi)||α2(εj)|.
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(ii) Since deg(u, v)[MΨ1×Ψ2
(εi, εj)] = ideg(u, v)[MΨ1×Ψ2

(εi, εj)] + odeg(u, v)[MΨ1×Ψ2

(εi, εj)] and by part (i) of this theorem we have∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2 (εi,εj)

deg(u, v)[MΨ1×Ψ2
(εi, εj)] =

∑
(εi,εj)∈ℜ1×ℜ2

2|α1(εi)||α2(εj)|.

Example 3.3. Consider the directed graphs given in Example 3.1. Here we have∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

ideg(u, v)[MΨ1×Ψ2(εi, εj)] = 3 + 2 = 5,

∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

odeg(u, v)[MΨ1×Ψ2(εi, εj)] = 3 + 2 = 5,

∑
(εi,εj)∈ℜ1×ℜ2

|α1(εi)||α2(εj)| = 3.1 + 2.1 = 5.

That is,∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

ideg(u, v)[MΨ1×Ψ2(εi, εj)]

=
∑

(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

odeg(u, v)[MΨ1×Ψ2(εi, εj)] =
∑

(εi,εj)∈ℜ1×ℜ2

|α1(εi)||α2(εj)|.

Also, ∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

deg(u, v)[MΨ1×Ψ2(εi, εj)] = 6 + 4 = 10,

∑
(εi,εj)∈ℜ1×ℜ2

2|α1(εi)||α2(εj)| = 2.3.1 + 2.2.1 = 10.

That is, ∑
(εi,εj)∈ℜ1×ℜ2

∑
(u,v)∈γΨ1×Ψ2

(εi,εj)

deg(u, v)[MΨ1×Ψ2(εi, εj)] =
∑

(εi,εj)∈ℜ1×ℜ2

2|α1(εi)||α2(εj)|.

4 Restricted Categorical Product of Soft Directed Graphs

In this section, we introduce the concept of the restricted categorical product of soft directed
graphs and present several fundamental theorems related to its structure and properties. We start
with the definition of the restricted categorical product, Ψ1 ⊗ Ψ2, formed from two soft directed
graphs Ψ1 and Ψ2 derived from a common directed graph Ψ∗. This product is defined over the
intersection of the parameter sets of the two soft directed graphs. We then establish three key the-
orems: the first confirms that Ψ1 ⊗Ψ2 is itself a soft directed graph; the second theorem provides
a formula for the number of nodes and directed edges in Ψ1 ⊗ Ψ2; and the third theorem offers
insights into various degree sums of the nodes in the restricted categorical product. To illustrate
these theoretical results, a few examples will be shown.
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Definition 4.1. Let Ψ∗ = (ϱ, δ) be a directed graph and

Ψ1 = (Ψ∗, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1}, and Ψ2 = (Ψ∗, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2},

be two soft directed graphs of Ψ∗ such that ℜ1 ∩ℜ2 ̸= ϕ. Then the restricted categorical product of Ψ1 and
Ψ2, which is represented by Ψ1 ⊗ Ψ2, is defined as Ψ1 ⊗ Ψ2 = {M1(ε) ×M2(ε) : ε ∈ ℜ1 ∩ ℜ2}. Here
M1(ε) ×M2(ε) denotes the categorical product of the directed parts M1(ε) of Ψ1 and M2(ε) of Ψ2 which
is defined as follows: M1(ε)×M2(ε) is a directed graph with node set ϱ(M1(ε)×M2(ε)) = γ1(ε)× γ2(ε)
and directed edge set δ(M1(ε) × M2(ε)), where ((t1, t′1), (t2, t′2)) is a directed edge in M1(ε) × M2(ε) if
and only if (t1, t2) is a directed edge in M1(ε) and (t′1, t

′
2) is a directed edge in M2(ε).

Example 4.1. Let Ψ∗ = (ϱ, δ) be a directed graph which is shown in Figure 6.

Figure 6: Directed graph Ψ∗ = (ϱ, δ).

Let ℜ1 = {v2, v6} ⊆ ϱ be a set of parameters. Define,

γ1 : ℜ1 → P(ϱ) by γ1(ε) = {u ∈ ϱ | u = ε or u is adjacent from ε or u is adjacent to ε}, ∀ε ∈ ℜ1.

That is, γ1(v2) = {v1, v2, v3, v5} and γ1(v6) = {v3, v4, v6, v7, v8}. Here (γ1,ℜ1) is a soft set over ϱ.

Also, define α1 : ℜ1 → P(δ) by α1(ε) = {(u, v) ∈ δ | {u, v} ⊆ γ1(ε)},∀ε ∈ ℜ1. That is,

α1(v2) = {(v1, v3), (v1, v5), (v2, v1), (v3, v2), (v5, v2)}, and
α1(v6) = {(v6, v3), (v6, v4), (v6, v7), (v8, v6), (v7, v8)}.

Here, (α1,ℜ1) is a soft set over δ. Then, M1(v2) = (γ1(v2), α1(v2)) and M1(v6) = (γ1(v6), α1(v6)) are
subdirected graphs of Ψ∗ as shown in Figure 7. Therefore Ψ1 = {M1(v2),M1(v6)} is a soft directed graph
of Ψ∗.

Figure 7: Soft directed graph Ψ1 = {M1(v2),M1(v6)}.
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Consider another parameter set ℜ2 = {v1, v6} ⊆ ϱ. Define,

γ2 : ℜ2 → P(ϱ) by γ2(ε) = {u ∈ ϱ | u = ε or u is adjacent from ε}, ∀ε ∈ ℜ2.

That is, γ2(v1) = {v1, v3, v5} and γ2(v6) = {v3, v4, v6, v7} . Here, (γ2,ℜ2) is a soft set over ϱ.

Also, define α2 : ℜ2 → P(δ) by α2(ε) = {(u, v) ∈ δ | {u, v} ⊆ γ2(ε)},∀ε ∈ ℜ2. That is,
α2(v1) = {(v1, v3), (v1, v5)} and α2(v6) = {(v6, v3), (v6, v4), (v6, v7)}. Here, (α2,ℜ2) is a soft set over δ.
Then, M2(v1) = (γ2(v1), α2(v1)) and M2(v6) = (γ2(v6), α2(v6)) are subdirected graphs of Ψ∗ as shown
in Figure 8. Therefore, Ψ2 = {M2(v1),M2(v6)} is a soft directed graph of Ψ∗.

Figure 8: Soft directed graph Ψ2 = {M2(v1),M2(v6)}.

Then, the restricted categorical product Ψ1 ⊗Ψ2 = {M1(v6)×M2(v6)} is shown in Figure 9.

Figure 9: Ψ1 ⊗ Ψ2 = {M1(v6) × M2(v6)}.

Theorem 4.1. Let, Ψ∗ = (ϱ, δ) be a directed graph and Ψ1 = (Ψ∗, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1} and
Ψ2 = (Ψ∗, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2} be two soft directed graphs of Ψ∗ such that ℜ1 ∩ℜ2 ̸= ϕ. The
categorical product Ψ1 ⊗Ψ2 is a soft directed graph of Ψ∗ ×Ψ∗.
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Proof. Let, Ψ1 = (Ψ∗, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1} and Ψ2 = (Ψ∗, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2}
be soft directed graphs of Ψ∗ = (ϱ, δ) such that ℜ1 ∩ ℜ2 ̸= ϕ. Then, the restricted categorical
product Ψ1 ⊗ Ψ2 is defined as Ψ1 ⊗ Ψ2 = {M1(ε) ×M2(ε) : ε ∈ ℜ1 ∩ ℜ2}. Here, M1(ε) ×M2(ε)
denotes the categorical product of the directed partsM1(ε) ofΨ1 andM2(ε) ofΨ2 which is defined
as follows: M1(ε)×M2(ε) is a directed graph with node set ϱ(M1(ε)×M2(ε)) = γ1(ε)× γ2(ε) and
directed edge set δ(M1(ε)×M2(ε)), where ((t1, t′1), (t2, t′2)) is a directed edge inM1(ε)×M2(ε) if
and only if (t1, t2) is a directed edge in M1(ε) and (t′1, t

′
2) is a directed edge inM2(ε).

The categorical product Ψ∗ × Ψ∗ is a directed graph with node set ϱ(Ψ∗ × Ψ∗) = ϱ × ϱ and
directed edge set δ(Ψ∗ × Ψ∗), where ((t1, t

′
1), (t2, t

′
2)) is a directed edge in Ψ∗ × Ψ∗ if and only if

(v1, v2) as well as (t′1, t′2) are directed edges in Ψ∗. Let the parameter set be ℜΨ1⊗Ψ2
= ℜ1 ∩ ℜ2.

Define γΨ1⊗Ψ2
from ℜΨ1⊗Ψ2

to P[ϱ(Ψ∗ ×Ψ∗)] by,

γΨ1⊗Ψ2
(ε) = γ1(ε)× γ2(ε),∀ε ∈ ℜ1 ∩ ℜ2.

Then, (γΨ1⊗Ψ2
,ℜΨ1⊗Ψ2

) is a soft set over ϱ(Ψ∗ × Ψ∗). Also, define αΨ1⊗Ψ2
from ℜΨ1⊗Ψ2

to
P[δ(Ψ∗ ×Ψ∗)] by,

αΨ1⊗Ψ2(ε) = {((u, v), (y, z)) ∈ δ(Ψ∗ ×Ψ∗) | {(u, v), (y, z)} ∈ γΨ1⊗Ψ2(ε)}, ∀ε ∈ ℜ1 ∩ ℜ2.

Then, (αΨ1⊗Ψ2 ,ℜΨ1⊗Ψ2) is a soft set over δ(Ψ∗ × Ψ∗). If we represent (γΨ1⊗Ψ2(ε), αΨ1⊗Ψ2(ε)) by
MΨ1⊗Ψ2(ε), then MΨ1⊗Ψ2(ε) is a subdirected graph of Ψ∗ ×Ψ∗,∀ε ∈ ℜ1 ∩ ℜ2, since,

γ1(ε)× γ2(ε) ⊆ ϱ× ϱ,

and any directed edge in αΨ1⊗Ψ2(ε) is also a directed edge in δ(Ψ∗ × Ψ∗). Then Ψ1 ⊗ Ψ2 can be
represented by the 4-tuple (Ψ∗ ×Ψ∗, γΨ1⊗Ψ2

, αΨ1⊗Ψ2
,ℜΨ1⊗Ψ2

) and also by
{MΨ1⊗Ψ2

(ε) : ε ∈ ℜ1 ∩ ℜ2} and Ψ1 ⊗Ψ2 is a soft directed graph of Ψ∗ ×Ψ∗.

Theorem 4.2. The restricted categorical product Ψ1 ⊗Ψ2 contains
∑

ε∈ℜ1∩ℜ2
(|γ1(ε)||γ2(ε)|) nodes and∑

ε∈ℜ1∩ℜ2
(|α1(ε)||α2(ε)|) directed edges.

Proof. By definition, Ψ1 ⊗ Ψ2 = {M1(ε) ×M2(ε) : ε ∈ ℜ1 ∩ ℜ2}. The parameter set of Ψ1 ⊗ Ψ2 is
ℜ1 ∩ ℜ2. Consider the directed part M1(ε) × M2(ε) of Ψ1 ⊗ Ψ2 corresponding to the parameter
ε ∈ ℜ1 ∩ℜ2. The node set ofM1(ε)×M2(ε) is γ1(ε)× γ2(ε)which contains |γ1(ε)||γ2(ε)| elements.
This is the case for all directed parts of Ψ1 ⊗ Ψ2. Therefore total number of nodes in Ψ1 ⊗ Ψ2 is∑

ε∈ℜ1∩ℜ2
|γ1(ε)||γ2(ε)|.

Also we know, ((tq, tr), (ts, tw)) is a directed edge in M1(ε) × M2(ε) if and only if (tq, ts) is a
directed edge inM1(ε) and (tr, tw) is a directed edge inM2(ε). There are |α1(ε)| directed edges in
M1(ε) and |α2(ε)| directed edges inM2(ε). Sowe can choose a pair of directed edges ak and al such
that one is from M1(ε) and the other is from M2(ε) in |α1(ε)||α2(ε)| different ways. Suppose that
ak is the directed edge (tq, ts) inM1(ε) and al is the directed edge (tr, tw) inM2(ε). Then this pair
of directed edges gives a directed edge ((tq, tr), (ts, tw)) in M1(ε)×M2(ε). Hence M1(ε)×M2(ε)
contains totally |α1(ε)||α2(ε)| directed edges. This is the case for all directed parts of Ψ1 ⊗ Ψ2.
Therefore total number of directed edges in Ψ1 ⊗Ψ2 is

∑
ε∈ℜ1∩ℜ2

|α1(ε)||α2(ε)|.

Example 4.2. Consider the directed graphs given in Example 4.1. Here we have total number of nodes
in Ψ1 ⊗ Ψ2 = 20 and

∑
ε∈ℜ1∩ℜ2

|γ1(ε)||γ2(ε)| = (5.4) = 20. That is, the total number of nodes in
Ψ1 ⊗Ψ2 =

∑
ε∈ℜ1∩ℜ2

|γ1(ε)||γ2(ε)|.

Also, total number of directed edges in Ψ1 ⊗ Ψ2 = 15 and
∑

ε∈ℜ1∩ℜ2
|α1(ε)||α2(ε)| = (5.3) = 15.

That is, total number of directed edges in Ψ1 ⊗Ψ2 =
∑

ε∈ℜ1∩ℜ2
|α1(ε)||α2(ε)|.
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Theorem 4.3. Let Ψ∗ = (ϱ, δ) be a directed graph and Ψ1 = (Ψ∗, γ1, α1,ℜ1) and Ψ2 = (Ψ∗, γ2, α2,ℜ2)
be two soft directed graphs of Ψ∗ such that ℜ1 ∩ ℜ2 ̸= ϕ. Then,

(i) ∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2 (ε)

ideg(u, v)[MΨ1⊗Ψ2
(ε)]

=
∑

ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

odeg(u, v)[MΨ1⊗Ψ2(ε)] =
∑

ε∈ℜ1∩ℜ2

|α1(ε)||α2(ε)|.

(ii) ∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

deg(u, v)[MΨ1⊗Ψ2
(ε)] =

∑
ε∈ℜ1∩ℜ2

2|α1(ε)||α2(ε)|.

Proof.

(i) Consider any directed partMΨ1⊗Ψ2(ε) = (γΨ1×Ψ2(ε), αΨ1×Ψ2(ε)) of Ψ1 ⊗Ψ2 which is given
by M1(ε) × M2(ε). By Theorem 4.2, we have number of directed edges in M1(ε) × M2(ε)
is |α1(ε)||α2(ε)|. Since the directed partMΨ1⊗Ψ2

(ε) is a directed graph having |α1(ε)||α2(ε)|
directed edges, we have∑
(u,v)∈γΨ1⊗Ψ2

(ε)

ideg(u, v)[MΨ1⊗Ψ2(ε)] =
∑

(u,v)∈γΨ1⊗Ψ2
(ε)

odeg(u, v)[MΨ1⊗Ψ2(ε)] = |α1(ε)||α2(ε)|,

since each directed edge in MΨ1⊗Ψ2
(ε) contributes 1 each to the sums∑

(u,v)∈γΨ1⊗Ψ2
(ε)

ideg(u, v)[MΨ1⊗Ψ2(ε)], and
∑

(u,v)∈γΨ1⊗Ψ2
(ε)

odeg(u, v)[MΨ1⊗Ψ2(ε)].

This is the case for all the directed parts MΨ1⊗Ψ2
(ε) of Ψ1 ⊗Ψ2. Hence,∑

ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

ideg(u, v)[MΨ1⊗Ψ2(ε)]

=
∑

ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

odeg(u, v)[MΨ1⊗Ψ2(ε)] =
∑

ε∈ℜ1∩ℜ2

|α1(ε)||α2(ε)|.

(ii) Since deg(u, v)[MΨ1⊗Ψ2
(ε)] = ideg(u, v)[MΨ1⊗Ψ2

(ε)]+odeg(u, v)[MΨ1⊗Ψ2
(ε)] and by part (i)

of this theorem we have∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2 (ε)

deg(u, v)[MΨ1⊗Ψ2
(ε)] =

∑
ε∈ℜ1∩ℜ2

2|α1(ε)||α2(ε)|.

Example 4.3. Consider the directed graphs given in Example 4.1. Here, we have∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

ideg(u, v)[MΨ1⊗Ψ2(ε)] = 15,

∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

odeg(u, v)[MΨ1⊗Ψ2
(ε)] = 15,

∑
ε∈ℜ1∩ℜ2

|α1(ε)||α2(ε)| = 5.3 = 15.
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That is, ∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

ideg(u, v)[MΨ1⊗Ψ2
(ε)]

=
∑

ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2 (ε)

odeg(u, v)[MΨ1⊗Ψ2
(ε)] =

∑
ε∈ℜ1∩ℜ2

|α1(ε)||α2(ε)|.

Also, ∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

deg(u, v)[MΨ1⊗Ψ2
(ε)] = 30,

∑
ε∈ℜ1∩ℜ2

2|α1(ε)||α2(ε)| = 2.5.3 = 30.

That is, ∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈γΨ1⊗Ψ2

(ε)

deg(u, v)[MΨ1⊗Ψ2
(ε)] =

∑
ε∈ℜ1∩ℜ2

2|α1(ε)||α2(ε)|.

5 Conclusion

The study of graphs has revolutionized our understanding and application of relationships in
complex systems, from social networking to transportation logistics. The introduction of soft set
theory has enhanced our ability to manage uncertainty in these relationships, leading to innova-
tive decision-making solutions. Extending traditional graph models to incorporate uncertainty,
researchers have introduced soft directed graphs, allowing for the analysis of uncertain relation-
ships between entities. This study explores both the categorical product and the restricted categor-
ical product of soft directed graphs, defining these products and demonstrating that they form soft
directed graphs. We established key theorems detailing the node and edge counts in both prod-
ucts. Additionally, we provided formulas for calculating the directed part in-degree, out-degree,
and degree sums of nodes in both products, showing how these degrees are influenced by the
structure of the original graphs. By illustrating these theoretical results with practical examples,
we demonstrated the utility and implications of our work. These findings significantly advance
the theoretical foundation of soft directed graphs.
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